54 research outputs found

    The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    Get PDF
    Hyperspectral imaging with a spatial resolution of a few mm 2 has proved to have a great potential within crop and weed classification and also within nutrient diagnostics. A commonly used hyperspectral imaging system is based on the Prism-Grating-Prism (PGP) principles produced by Specim Ltd. Finland. One of the novel systems based on the PGP spectrograph (VTTVIS) was build by The Department of Agricultural Sciences, AgroTechnology, KVL, Denmark, in 1995. Several other agricultural institutions have now implemented the technology in their research. None of these has published any thoroughly work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentation with special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior to any analysis. Most of the random noise sources can be minimised by carefully selecting high-grade components especially wit

    FeederAnt - An autonomous mobile unit feeding outdoor pigs

    Get PDF
    Small robots and the concept of decentralized animal husbandry make it possible to renew the principles of organic agriculture. The farm animals will be able to use the same type of housing and are placed integrated with the fields. This is expected to achieve a better utilization of nutrients and a better survival rate for useful insects and micro organisms. The small fields are flexible and could fit to the variation in soil structure topography. This type of precision agriculture has the possibility of increasing biodiversity. The paper presents the concept of an autonomic feeding system for outdoor piglets. Initial results are presented using a remote controlled feeding unit (a prototype of the FeederAnt) to feed several pens with piglets. The FeederAnt drives into the grass paddocks twice a day and position itself in a new location for each feeding. This will help to distribute the manure from the animals evenly over the grass paddock to prevent point leaching of nutrients. The FeederAnt replaces many stationary feeding tables and reduce the amount of daily manual feeding routines. Further, it is expected that the problem with vermins will be solved since no feed residues will be left within the pens.

    Alpha-l-Locked nucleic acid-modified antisense oligonucleotides induce efficient splice modulation in vitro

    Get PDF
    Alpha-l-Locked nucleic acid (α-l-LNA) is a stereoisomeric analogue of locked nucleic acid (LNA), which possesses excellent biophysical properties and also exhibits high target binding affinity to complementary oligonucleotide sequences and resistance to nuclease degradations. Therefore, α-l-LNA nucleotides could be utilised to develop stable antisense oligonucleotides (AO), which can be truncated without compromising the integrity and efficacy of the AO. In this study, we explored the potential of α-l-LNA nucleotides-modified antisense oligonucleotides to modulate splicing by inducing Dmd exon-23 skipping in mdx mouse myoblasts in vitro. For this purpose, we have synthesised and systematically evaluated the efficacy of α-l-LNA-modified 2′-O-methyl phosphorothioate (2′-OMePS) AOs of three different sizes including 20mer, 18mer and 16mer AOs in parallel to fully-modified 2′-OMePS control AOs. Our results demonstrated that the 18mer and 16mer truncated AO variants showed slightly better exon-skipping efficacy when compared with the fully-23 modified 2′-OMePS control AOs, in addition to showing low cytotoxicity. As there was no previous report on using α-l-LNA-modified AOs in splice modulation, we firmly believe that this initial study could be beneficial to further explore and expand the scope of α-l-LNA-modified AO therapeutic molecules

    An autonomous robot for feeding outdoor pigs

    Get PDF
    The objective of this is to develop a rational feeding technique for outdoor pigs and at the same time improve the outdoor system with regard to environmental impact and health. For a rational and competitive free ranch system ensuring high animal welfare and low environmental strain automation is crucial

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    Parental origin of sequence variants associated with complex diseases

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldEffects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.info:eu-repo/grantAgreement/EC/FP7/21807

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals.

    Get PDF
    FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177,330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 × 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 × 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity
    corecore